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Abstract 

The established procedure for analyzing molecular 
vibrations in terms of normal modes has been adapted 
so that experimental anisotropic thermal parameters 
can be used to study low-frequency internal vibrations 
of simple molecules in crystals. This involves 
quasinormal modes, which are linear combinations 
of selected low-frequency internal modes such as the 
torsional librations about individual bonds. Higher- 
frequency modes are neglected, since their contribu- 
tion to the atomic mean-square displacements should 
be small. The force constants for selected low- 
frequency internal modes, together with the tensor 
components (T,L,S)  that describe the overall 
molecular vibration, become the variables in an 
iterative least-squares refinement in which the 
observations are the atomic U0 values. As a result, 
the concerted motion of the atoms for each quasinor- 
mal mode is defined and also its vibrational 
frequency. Corrections to bond lengths and angles 
due to internal vibrations can be calculated. In tests 
involving two different lipid crystal structures, the 
internal motions were introduced as torsions about 
two or three bonds occurring near the junction of an 
extended hydrocarbon chain with a relatively rigid 
massive atomic grouping. Compared with the simple 
rigid-body model, there were highly significant 
improvements in agreement between experimental 
and calculated U U values. Force constants for torsion 
about three C-S bonds were also in agreement [26 (5), 
23 (6) and 22 (6) J mo1-1 deg-2]. In one of the crystal 
structures (determined at 123 K), the six C-C bonds 
of a paraffin chain have average lengths 1.526 (2) A 
before correction, 1.527 (3)A after correction for 
simple rigid-body libration and 1.536 (4) A after cor- 
rections including the quasinormal vibrations. The 
latter agrees with the electron diffraction value 
1.542 (4) A for n-hexadecane. 
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Introduction 

In the analysis of molecular vibrations in terms of 
atomic anisotropic thermal parameters, a model must 
be introduced in order to define how the individual 
atomic motions are correlated with each other. The 
most widely used is the rigid-body model (Cruick- 
shank, 1956; Schomaker & Trueblood, 1968). When 
internal modes of vibration are appreciable, they may 
be taken into account by assuming that the molecule 
consists of rigid segments with the segments in relative 
motion (Johnson, 1970; Dunitz & White, 1973). 
Usually, they are assumed to ride on each other 
(Busing & Levy, 1964), but otherwise to move in an 
uncorrelated way. 

There are certain kinds of molecules that are not 
well suited to analysis with these models. They 
include molecules with semi-rigid fused-ring systems, 
such as cholesterol and other steroids, and lipids in 
which a lengthy hydrocarbon chain is attached to a 
bulky more rigid segment, such as the fatty-acid esters 
of cholesterol. Thus, it would be desirable to treat 
the vibrations of atoms along the lipid chain as being 
correlated in various ways that can be readily defined 
and tested against the diffraction results. With this 
aim, we have developed a general procedure based 
on the normal coordinate analysis of molecular vibra- 
tions (Wilson, Decius & Cross, 1955). It is assumed 
that molecules in the crystal are vibrating indepen- 
dently of each other. The internal motion of each 
molecule is described in terms of quasinormal modes. 
A quasinormal mode is defined as some linear combi- 
nation of a small number of internal modes of vibra- 
tion. A particular internal mode would typically be 
the torsional motion of the ~nolecule about a selected 
covalent bond. The major simplifying approximation 
is the neglect of high-frequency internal modes such 
as framework bond stretching and bond-angle bend- 
ing. These modes have large force constants and thus 
make only a small contribution to the mean-square 
(m.s.) atomic displacements. As a result of such sim- 
plification, the internal motion of the molecule can 
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be defined in terms of only a few variables, consisting 
of a force constant for each of the selected internal 
bond torsions. These force constants, together with 
the TLS tensor components (Schomaker & True- 
blood, 1968), which describe the external modes, can 
be determined by an iterative least-squares procedure 
in which the observations are the atomic anisotropic 
thermal parameters obtained from X-ray or neutron 
diffraction. 

1. Quasinormal modes for internal motions 

For molecules in crystals, Higgs (1955) was able to 
separate the kinetic energy vibration into independent 
parts, one arising from internal distortion, and the 
other from the rigid motion of the molecule. The 
potential energy was separated in a similar way, 
neglecting the influence of intermolecular interaction 
on the internal modes and also the correlations 
between internal distortion and rigid motion (Coriolis 
terms). Only the internal contributions are described 
here, since the treatment of the rigid motion follows 
that of Schomaker & Trueblood (1968). 

The internal kinetic and potential energy may be 
given as 

2 Tint = ~/G-l~ ' 

2 Vint = y'Fy, 

where the vector y has 3 n , 6  components, one for 
each of the internal modes for a non-linear molecule 
of n atoms. Examples of internal modes are bond 
stretching, bond-angle bending, an out-of-plane bond 
bending or a bond torsion. The vector y is obtained 
from the vector x of atomic displacements in a Car- 
tesian axial system by the transformation 

y -- bx, 

where the matrix b of order ( 3 n - 6 ) x 3 n  depends 
only on the molecular geometry and can be derived 
by a standardized procedure (Wilson, Decius & 
Cross, 1955). Wilson's kinetic energy matrix is given 
by 

G = b M - l b  ', 

where M is a diagonal matrix of atomic masses ( M  U = 
mjSij, where 8ij is the Kronecker delta and m3i_2 = 
m3i_ 1 = m3i), and F is the symmetric force constant 
matrix. 

If the force constants have been determined, the 
secular equation 

• I G F -  ~ II = 0 

can be solved to give the frequencies of the normal 
modes of vibration and the relative contributions of 
all the internal modes to each normal mode. 

The quasinormal modes of vibration are introduced 
as approximations by selecting a certain number k of 

the internal modes, which are presumed to be of low 
frequency, and then freezing the remainder. The vec- 
tor y is arranged so that the k components for the 
selected modes occur at the end and the initial (3n - 
6 - k )  components are constrained to be zero. Com- 
ponents of the matrices b, F and G are arranged in 
a corresponding way. Thus the column vector y is 
written 

and the transformation matrix is partitioned to give 

b= f~; 

where 0 =  b~x and s =  b2x. The energy relationships 
for the quasinormal modes become 

2 Zint = s'Gol ~ 

2 Vi,t = s'F0s, 

where the matrices F0 and Go ~ are of order k × k. The 
matrix F0 is simply derived from F by deleting all but 
the last k rows and columns. Since Fo is symmetric 
it consists of k (k  + 1)/2 independent components f~r,. 
The matrix Go I is obtained from G as described by 
Wilson, Decius & Cross (1955; see their Appendix 
IX). 

Thus if the matrices G and G -t are partit ioned to 
obtain 

FGII : GI2~ F (G- I ) I I  : (G-l)121 
G=[-13~I--~3-2-2- [ and G-I=L(G-.Ij~.i.(.G-i~2.2.], 

where 622 and (G-1)22 are of order k xk,  then Go l =  
(G-1)22 and Go=[(G-I)22]-l=G22-G2~(G-1)l~GI2. 
The quasinormal modes are then described by the 
solutions of the modified secular equation 

IGoFo-All =0.  

These give the frequencies o~i from the eigenvalues ,t 2 2 2 A/=,,Tr c ~oi and define the relative magnitudes of 
the vectors of internal (s) and quasinormal (Q) coor- 
dinates through the relationship s = LQ, where L is 
the matrix of the eigenvectors. 

2. The mean-square amplitudes of the 
quasinormal modes 

The time-averaged mean-square (m.s.) amplitudes of 
the quasinormal modes can be expressed as the 
diagonal matrix XQ=(QQ' ) .  In the harmonic 
approximation, the diagonal components are given 
by the quantum-mechanical  relationship 

h (hc~i~ 
( QiQi) = 8 I7. 2 coJ-------~i coth \ 2k T]  

According to Cyvin (1968), the corresponding matrix 
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for m.s. amplitudes in terms of the internal coordi- 
nates is 

I~ ~ = (ss') = L(QQ')L' 

= PI  Fo I ..)L P2Go + P3GoFoGo + P4GoFoGoFoGo + . . . ,  
( 1 )  

where a power-series expansion has been introduced 
for the hyperbolic cotangent function (see also 
Appendix A). The factors P,, P2 etc. are found to be 
simply proportional to various powers of kT. Thus a 
system of equations is developed relating the m.s. 
amplitudes of selected internal modes with their cor- 
responding force constants. However, the form of the 
power-series expansion for coth ( x ) / x  must be care- 
fully chosen in order to achieve an adequate approxi- 
mation at the temperature and in the frequency range 
of interest. The approximation c o t h ( x ) / x =  
( 1/x 2) + 1/4 (Morino, Kuchitsu, Takahashi & Maeda, 
1953) gives errors of less than 15% for 0.05 < x < 2.5 
corresponding to T -- 300 K and 20 < to < 1050 cm- t 
We have chosen a four-term expansion with 
coefficients fitted by least squares having similar 
accuracy over a wider range 0 . 0 5 < x <  10.0, corre- 
sponding to T = 300 K and 20 < to < 4200 cm- '  or T = 
100 K and to < 1400 cm- '  (He, 1984). The expression 
for X s then consists of the first four terms in the 
expansion (1) with P , =  1.00021kT, P2=2.61124kT 
x (h/4~rkT) 2 x 10 -~, /93 = -2"80087kT(h/4rrkT) 4 
xlO -3 and P4 = 9"42058kT(h/4~kT) 6 x 10 -6. 

3. Refinement of force-constant parameters by 
least squares 

The matrix ~Xnt of m.s. amplitudes for the internal 
vibrations of the atoms in a Cartesian crystal axial 
system can be derived from the internal coordinates 
by the transformation 

Z~'~t = (xx') = a(yy')a' = a2(ss')a ~, (2) 

where the matrix a is obtained by the unique transfor- 
mation (Higgs. 1955) 

a =  M - I b ' G  -1 (3) 

The matrix a can then be partitioned so that the last 
k columns form the submatrix a2. It should be noted 
that since all except the last k components of the 
vector y have been constrained to zero value, some 
atoms may not be explicitly involved in the com- 
ponents of the vector s. Nevertheless, information 
concerning the complete molecular structure is 
retained in a2, which is of order 3n × k. As a result 
of the transformation (2), the matrix X~',t is symmetric 
of order 3 n × 3 n, which is consistent with the partici- 
pation of all n atoms of the molecule in the internal 
vibrations. 

When the additivity of m.s. amplitudes from inter- 
nal and external modes of vibration is assumed 

(Higgs, 1955), the resultant m.s. amplitude matrix 
becomes 

X x = ~c ix., + X ~x,, 

where X~xt is expressed in terms of the T, L, S tensors 
for rigid-body motion (Schomaker & Trueblood, 
1968) and X~'n, is obtained from (2) with substitution 
of (ss') from (I). The anisotropic thermal parameters 
U 0 from a crystal structure determination lead to 
estimates of 6n independent components of the 
symmtric matrix X". They belong in the 3 × 3 blocks 
along the diagonal. From these estimates and the 
corresponding components of X x, 6n observational 
equations can be derived in which the variables will 
in general consist of the 20 independent TLS com- 
ponents and the k(k + I )/2 independent components 
fm of the force-constant matrix, Fo. The number of 
variables can be further reduced by the approxima- 
tion wherein a simple form is assumed for the matrix 
Fo. For a stable molecule, Fo should be positive 
definite. The off-diagonal terms express interactions 
between the internal deformations and are usually 
small compared with diagonal terms. By considering 
only nearest-neighbor interactions, the number of 
independent force constants becomes ( 2 k - I ) ,  and 
by neglecting all interactions, as we have done so far, 
the number becomes k. Thus, relatively few additional 
variables may be required in order to describe the 
internal molecular vibrations in terms of quasinormal 
modes. These variables can be determined by an 
extension of the least-squares procedure already for- 
mulated for the simple rigid-body model. The 
necessary derivatives of E~xt with respect to T, L, S 
components have been given by Schomaker & True- 
blood (1968). Only the derivatives of X ~',,, with respect 
to fm components are considered here. 

If we write Fo = [fij], then 

OFo/Oft,.=[Ofo/Of,.]=F,,,,, 
where 

Of/Oft,.=6o,~,.+6j,.i,, for 1# m 

6 o,t~ for 1 = m. 

With relationships from Appendix B,* 

a~,SlOf,,, = -P ,  Fo~Fzr. Fol + P3GoFu.Go 

+ P,{[GoF,m GoFoGo] + [GoF,m GoFoGo]'}. 
(4) 

Hence, in the Cartesian axial system, 
x 

a 2 [ ~ : / ~ f ~ m ] a 2 .  aX ~nt /a f~m = s , 

Because the observational equations are non-linear 
with respect to ft,,, an iterative least-squares refine- 
ment is necessary. Reasonable starting values for ftm 
must be assigned. 

* Note the prime in (4) indicating that the last term is transposed. 
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Our strategy has been to define a diagonal force 
constant matrix on the basis of physical intuition and 
then to optimize the force constants by stepwise 
regression. If a force constant is found to be insig- 
nificantly different from zero in terms of its e.s.d., it 
is deleteted from the assumed model.* Experience 
has shown this procedure to be robust. In both test 
cases described below, convergence was reached in 
less than ten cycles, assuming the initial values for 
all force constants to be fz = 25 J mol -~ deg -2. 

A full-matrix least-squares procedure is used to 
minimize the residual ~.kWk Azk, where a k =  
[(UO) o - ( U o )  c]k, in which (U~) o is the value for an 
anisotropic thermal parameter for the kth atom 
derived from the crystal structure refinement and 
(Uv)c is the corresponding value calculated for the 
assumed molecular motion. These thermal param- 
eters are referred to a Cartesian crystal axial system. 
The weights Wk are obtained from the mean variances 
in (Uo) o for the kth atom. 

It is expected that a quasinormal mode analysis 
will be feasible for molecules with fifty atoms or more, 
but with increasing computational limitations. 
Although the Go matrix may be small, it must be 
derived from other matrices of order approximately 
3 n × 3 n, where n is the number of atoms. 

4. Correction of bond lengths and angles for 
internal vibrations 

The bond length and angle corrections due to the 
external and internal motions are additive. The exter- 
nal-motion corrections are treated in the same way 
as for simple rigid-body motion (Johnson & Levy, 
1974) and will not be described here. 

For the internal-motion corrections, it is important 
to note that all components in the m.s. amplitude 
matrix :E ~'nt can be calculated in terms of the quasinor- 
mal vibrational model using (2) and (3). Thus, while 
values of the force constants may have been deter- 
mined only from observations corresponding to the 
3 x3 block-diagonal components of :E~'nt, the model 
allows the calculation of the remaining components,  
which describe the correlated internal motion of all 
pairs of atoms in the molecule. 

Following Busing & Levy (1964) and Johnson 
(1970), the corrected bond length (do)  between atoms 
i and j is given by 

( d i j ) =  o o d o +  A / 2 d  U, 

where d ° is the uncorrected value and A is the m.s. 
relative displacement of atoms i and j in the plane 

* Initial calculations have been carried out with the minimum 
necessary modification of a computer program (Craven & He, 
1983) for thermal-motion analysis by the method of Dunitz & 
White (1973). Improvement might come from using the statistical 
technique of regression on principal components (Massy, 1965; 
Kendall & Stuart, 1966; Scheringer, 1968). 

normal to the bond. If xixi, y y ,  ziz  i are the diagonal 
components of :E~'nt corresponding to the ith atom 
and xix> y y j  and z~zj etc. are off-diagonal terms which 
couple the ith and j th  atoms, then 

A = sin 2 yx(XiXi + xjxj  - 2xix i  ) 

+ 2 cos yx cos yy(XtVj + xjy~ - xiy~ - xjyj)  

+ sin 2 Yy (YtYi + YjY.i - 2yiyj)  

+ 2 cos yy cos yz (y i z i  + yjzi - yiz~ - y.izj) 

+ sin 2 y~(ziz i  + zjzj - 2z iz j )  

+ 2 cos yz cos yx(ZiXj + z ixi - z~xi - z.ix.i), 

where (cos Yx, cos yy, cos %) are the direction cosines 
of the bond with respect to the Cartesian crystal axial 
system. 

The corrections to bond angles due to the internal 
vibrations are also obtained from ~i~t, as described 
by Scheringer (1978). The lengthy equations are not 
reproduced here. 

5. Applications 

Quasinormal mode analyses have been carried out 
for two lipid crystal structures that involve molecules 
with an extended paraffin chain joined to a residue 
with relatively greater rigidity and inertia (Figs. 1, 2). 
Since the structures were determined by X-ray diffrac- 
tion, the H-atom temperature factors are relatively 
inaccurate. Thus, the effect of the H atoms on the 
molecular vibrations has been neglected. Anisotropic 
thermal parameters for the other atoms indicate that 

C(51~ .O(5 

Fig. 1. Molecular structure ofheptyl l-thio-a-D-mannopyranoside 
(HTM) at 123 K (Carter, Ruble & Jeffrey, 1982). Thermal ellip- 
soids are at the 50% probability level. Arrows indicate the bonds 
where there are significant internal torsional librations. 

coz) c(to) c(8) c(6) c~) C~)c( 00(Z)-(H) 

131 off) 

s(2) C(15) C(14) 

Fig. 2. Molecular structure of O-ethyl S-(ll-carboxyundecyl)- 
dithiocarbonate (ECT) at room temperature (Abrahamsson & 
Pearson, 1976). Thermal ellipsoids are at the 50% probability 
level. The H atoms (except in the carboxylic acid group) were 
found in difference Fourier maps, but they are not shown here. 
Arrows indicate bonds involved in internal torsional librations. 
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Table 1. Molecular thermal motion parameters 

( a ) External vibrations 
Components and principal values of  the translational (T) and librational (L) tensors are in units A2 × 104 and 
deg 2. The cross tensor (S) is in units deg A x 103. Tensor components are with respect to the Cartesian crystal 
axes a, c* x a, c*. Results for the three models are (i) simple rigid body, (ii) uncorrelated internal motions (Dunitz 
& White, 1973), (iii) internal motion from quasinormai modes. 

H T M  ( 123 K) ECT (294 K) 

(i) (ii) (iii) (i) (ii) (iii) 
T~ 125 (7) 118 (6) 116 (6) 503 (21) 566 (24) 445 (21) 
T22 198 (8) 224 (7) 101 (14) 554 (39) 574 (37) 526 (37) 
7"33 140 (6) 139 (5) 143 (5) 584 (30) 859 (72) 491 (33) 
7"12 -15 (7) -3  (6) -3 (6) 146 (24) 206 (26) 123 (23) 
Tt3 18 (6) 12 (5) 9 (5) -100 (23) -262 (48) -50 (23) 
7"23 -12 (6) -2  (6) -26 (6) -130 (31) -314 (54) -77 (29) 
T t 112 112 90 381 359 356 
T 2 145 i 44 114 474 415 442 
T 3 205 224 157 806 1226 664 
L~ 2.3 (5) 3.0 (5) 0.2 (5) 18-3 (39) 27.0 (42) I 1.0 (37) 
L22 0-9 (1) 0.9 (1) 0.8 (1) 1-1 (4) 6.6 (15) 0-5 (4) 
L33 0-4(6) 1.8 (6) 1"7 (5) 9"9 (19) 10"2 (18) 7.2 (17) 
Ll2 0-1 (4) 0"2 (3) 0"3 (3) -4"4 (11) -11"8 (21) -1"5 (12) 
Lt3 1.1 (4) -0.7 (5) -0-2 (4) 12.3 (26) 13.7 (25) 7.9 (24) 
L23 0.1 (4) -0.2 (3) 0-3 (3) -3.3 (8) -5"0 (9) - 1.4 (8) 
L I -0.1 0"9 0.9 -0.2 0.8 0.2 
L 2 0.9 1 "6 1.0 1.1 3.5 1.0 
L 3 2.7 3.3 1.7 30.1 39-6 17-4 

St -2  (30) -21 (26) -5  (24) 13 (83) -377 (136) 101 (77) 
$12 -93 (14) -140 (15) 37 (20) -13 (73) -373 (113) 86 (67) 
St3 -6  (14) -19 (12) -23 (11) 222 (58) 629 (111) 193 (52) 
$21 8 (7) 11 (6) 14 (6) - I  (21) 232 (64) -37 (20) 
$22 -11 (21) -18 (18) 11 (17) 64 (50) 218 (69) -114 (44) 
$23 -1 (7) -1 (6) 2 (5) -124(19) -500(97) -101 (17) 
$3~ 27 (19) 18 (16) 20 (15) -57 (44) -203 (52) 14 (41) 
$32 -59 (17) 55 (26) 8 (17) -72 (49) -182 (53) -3  (46) 
$33 14 38 7 51 159 13 

( b ) Internal molecular librations 
Values are (ii) m.s. amplitudes of libration (deg 2) (Dunitz & White, 1973) and (iii) force constants for bond 
torsion (J mol -l  deg2). For model (ii), internal librations are with respect to the rigid pyranoside group for HTM 
and the ethyldithiocarbonate group for ECT. 

H T M  (123 K) ECT (294 K) 

(ii) (iii) (ii) (iii) 
C(2)-C(1)-S-C(7) -9.3 (17) 26 (5) C(13)-S(i)-C(12)-C(i !) -16 (4) 22 (6) 
c (1 ) - s -c (7 ) -c (8 )  -3.5 (17) 23 (6) S(l)-C(12)-C(l l)-C(lO) -42 (30) 10 (3) 
S-C(7)-C(8)-C(9) +11.6 (27) 9 (2) 

both molecular frameworks are vibrating non-rigidly. 
Thus there are several significantly non-zero values 
for AAB = ( U 2 ) - - ( / , / 2 ) ,  where m.s. displacements are 
calculated for atoms A and B along the direction of 
the intramolecular vector A. . .B  (Hirshfeld, 1976). 

(a) Heptyl 1-thio-a-D-mannopyranoside ( HTM) at 
123 K 

The crystal structure (space group P2~2~2~) was 
determined from diffractometer data collected with 
0 /20  scans using graphite-monochromated Mo Ka 
radiation and was refined to give R = 0.03 (Carter, 
Ruble & Jeffrey, 1982). Analysis of the molecular 
vibrations assuming simple rigid-body motion 
gave Rw=[~,WkAak/~,Wk(Uo)2o]l/2=O'155 and s =  
[~,WkA2k/(n -- m)] I/2 = 4.00, where n = 114, the num- 
ber of observations, and m = 20, the number of vari- 

ables. Non-rigid behavior was indicated by highly 
significant values of AAB for atoms at the opposite 
ends of the extended chains, such as 0.0164 ~2 (140-) 
for S...C(13), 0.0153 A2 (12o-) for C(4)...C(13). The 
model for the molecular motion was then extended 
to include quasinormal vibrations. Initially, eight 
force constants were introduced for torsional vibra- 
tions about the bond C(5)-C(6)  in the carbohydrate 
residue, and for all the bonds C(1 )-S through C( 11 )- 
C(12) in the extended chain (Fig. 1). The matrix Fo 
was assumed to have diagonal form. After least- 
squares refinement, only the force constants for tor- 
sions about the three bonds in the region of the 
ring-to-chain junction, C(1)-S,  S-C(7),  C(7)-C(8) ,  
were found to be significantly different from zero in 
terms of the corresponding e.s.d.'s. With the internal 
motion described in terms of these three force con- 
stants, the least-squares refinement converged giving 
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Table 2. Bond lengths (,~) and angles (°) with thermal-motion corrections. 

Corrected values be low are from the model  with quasinormal  modes.  

(a) H T M  at 123 K 
Values for the pyranoside  moiety  are not given since correct ions are small (<0 .001 /~ ,  0-1 °) for all three models  used to describe the 

molecular  thermal motion.  

Uncorrec ted  Corrected Uncorrec ted  Correc ted  

C(l)-S 1.824 (2) 1.826 (2) C(1)-S-C(7) 98.0 (1) 97.9 (1) 
S-C(7) 1.818 (2) 1.825 (2) S-C(7)-C(8) 110.2 (1) 109.9 (1) 
C(7)-C(8) 1.526 (3) 1.533 (3) C(7)-C(8)-C(9) 111.1 (1) 110.3 (1) 
C(8)-C(9) 1.528 (3) 1.541 (3) C(8)-C(9)-C(10) 113.0 (2) 111.8 (2) 
C(9)-C(10) 1.530 (3) 1.540 (3) C(9)-C(10)-C(I 1) 112-8 (2) 111.7 (2) 
C(10)-C(I l) 1.524 (3) 1.535 (3) C(10)-C(1 l)-C(I2) 112.9 (2) I I 1.6 (2) 
C(1 l)-C(12) 1.524 (3) 1.536 (3) C(1 i)-C(12)-C(13) 113.1 (2) l l2.0 (2) 
C(12)-C(13) !.525 (3) 1.532 (3) 

( b ) E C T  at 294 K 
E.s.d.'s in corrected values are the same as for the corresponding uncorrected values. 

Uncorrec ted  Corrected Uncorrec ted  Corrected 
C(1)-O(2) 1.296 (8) 1.308 O(1)=C(1)-O(2) 123.6 (4) 124.1 
C(1)=O(1) 1.215 (8) 1 - 2 2 6  C(2)-C(1)=O(1) 123.3 (5) 123.6 
C(1)-C(2) 1.494 (8) 1.502 C(2)-C(1)-O(2) 113.0 (5) 111.8 
C(2)-C(3) 1.495 (10) 1.506 C(1)-C(2)-C(3) 116.4 (6) 115.2 
C(3)-C(4) 1.517 (10) 1.527 C(2)-C(3)-C(4) 112.8 (6) l l l .6 
C(4)-C(5) 1.510 (10) 1 . 5 2 1  C(3)-C(4)-C(5) 115.6 (6) 114-4 
C(5)-C(6) 1.505 (10) i.515 C(4)-C(5)-C(6) 113.7 (6) 112.6 
C(6)-C(7) 1.513 (10) 1.523 C(5)-C(6)-C(7) 115.6 (6) 114.4 
C(7)-C(8) 1.504 (10) 1.514 C(6)-C(7)-C(8) 114.7 (6) 113.6 
C(8)-C(9) 1-514 (10) 1.526 C(7)-C(8)-C(9) 114.8 (6) 113.6 
C(9)-C(10) 1.503 (I0) 1.512 C(8)-C(9)-C(10) 114-9 (6) 113.8 
C(10)-C(1 I) l.Sl0 (10) 1.525 C(9)-(C(10)-C(1 I) 113.8 (6) 112.6 
C(I 1)-C(12) 1.507 (10) 1.513 C(10)-C(l l)-C(12) 113.2 (6) 112.4 
C(12)-S(1) 1.805 (6) 1.808 C(l 1)-C(I2)-S(1) 114-6 (6) 114.3 
S(l)-C(13) 1.736 (6) 1.745 C(12)-S(1)-C(13) 104.6 (3) 104.5 
C(13)-O(3) 1-331 (8) 1.334 S(1)-C(13)-O(3) 105.7 (4) 105.6 
C(13)--S(2) 1-626 (6) 1.632 S(1)-C(13)=S(2) 127.8 (3) 127.6 
O(3)-C(14) 1.466 (8) 1 . 4 7 1  O(3)-C(13)=S(2) 126.5 (4) 126.4 
C(14)-C(15) 1.492 (10) 1.496 C(13)-O(3)-C(14) 119.1 (5) 118.9 

O(3)-C(14)-C(15) 105.1 (5) 105.0 

R~ = 0.122 and s --- 3.19. A statistical F test indicates 
an improvement over the simple rigid-body model, 
which can be accepted at a confidence level greater 
than 99%. A model of the type proposed by Dunitz 
& White (1973) was also tested. The internal motion 
was described as torsional librations about the same 
three bonds. However, in this model, the vibrations 
of the rigid segments of the molecule are assumed to 
be uncorrelated. Values for the agreement indices 
Rw=0.128 and s = 3 . 3 6  are intermediate between 
those of the other models. Molecular parameters for 
all three models are in Table 1. 

( b ) O-Ethyl S- ( 11 -carboxyundecyl) dithiocarbonate 
(ECT) 

This crystal structure (space group P1) was deter- 
mined from ten-point 0 /20  step-scan diffractometer 
data collected at room temperature using graphite- 
monochromated Cu Kc~ radiation (Abrahamsson & 
Pearson, 1976). Structure refinement gave R = 0.065. 
The molecule (Fig. 2) is extended except for a twist 
(torsion angle 89 °) at the C(12)-S(1) bond, which 
joins the paraffin chain and the dithiocarbonate 
group. Non-rigid vibrations of the molecular 
framework are indicated by significant /tAn values 

such as 0-024 A 2 (8o') for O(1)---S(2), 0.030 A 2 (10o') 
for O(2).. .S(1) and 0.029/~2 (7or) for C(1)...S(2). 

A simple rigid-body model for the molecular vibra- 
tions gave Rw=0.144 and s=2 .98 .  Inclusion of 
quasinormal modes involving torsion about the bonds 
S(1)-C(12) and C(12)-C(11) gave Rw=0.126 and 
s = 2.34, this improvement being significant at a con- 
fidence level greater than 99%. The Dunitz & White 
model with torsional librations about the same two 
bonds gave Rw - 0 . 1 3 2  and s = 2.76. In this case, only 
the torsion about the S(1)-C(12) bond has a sig- 
nificant m.s. amplitude. Molecular parameters for all 
three models are in Table 1. 

Discussion 

The internal vibrations of both HTM and ECT have 
been analyzed in terms of highly simplified sets of 
quasinormal modes. In each structure, the molecule 
is treated as two rigid segements joined by a flexible 
region with motion involving correlated torsions 
about two (ECT) or three (HTM) bonds. If there are 
appreciable contributions to the atomic vibrational 
amplitudes due to the many other internal modes, 
their expression is collective. To some extent, these 
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other modes are likely to be accounted for in the 
molecular T, L and S parameters. 

In Table l, results from this model (iii) are also 
compared with those assuming (i) simple rigid-body 
motion, and (ii) a segmented body model in which 
the segments ride on each other but otherwise vibrate 
in an uncorrelated way (Dunitz & White, 1973). It 
can be seen that many T, L and S components are 
significantly different in the three models. Compared 
with the values for the simple rigid-body model, mag- 
nitudes of the T, L and S components tend to be 
larger for model (ii) and smaller for model (iii). The 
effect can also be seen in the magnitudes of the 
principal values for T and L. For model (ii) the m.s. 
amplitudes for the internal librations are negative 
except for the torsion about one bond (Table l b). In 
physical terms, it appears that the introduction of 
internal motion according to the Dunitz & White 
model leads to a slight enhancement of the overall 
rigid-body vibrations, which is largely offset by dam- 
pening due to the internal motion. In model (iii), the 
introduction of quasinormal modes has the opposite 
effect. Contributions to the atomic m.s. displacements 
from rigid-body motion are reduced when a part of 
the motion is interpreted as being internal. In HTM, 
model (iii) gives rise to a highly significant reduction 
in 7"22, which is translational motion in a direction 
almost normal to the plane of the zigzag paraffin chain 
(Fig. 3; Carter et  al., 1982). This result seems reason- 
able since the atomic displacements due to internal 
torsional motion in the chain should be greatest in 
this direction. 

Bond lengths and angles before and after correc- 
tions due to molecular libration and quasinormal 
vibrations are in Table 2. Corrections assuming 
models (i) and (ii) are not given since they are all 
small. Thus for the six C-C bonds in the HTM paraffin 
chain, uncorrected distances range from 1.524 to 
1.530 A with average value 1.526 (2) ~ .  After correc- 
tions according to models (i) and (ii), the average in 
both cases increases to 1.527 (3)A.  Similar small 
increases are obtained for ECT. The corrections for 
the quasinormal vibrations are considerabl3 greater, 
giving an average C-C distance of 1.536 (4) , &  for the 
HTM chain, in good agreement with the value 
1.542 (4) A obtained by electron diffraction from gas- 
eous n-hexadecane (Fitzwater & Bartell, 1976). For 
ECT, the ten C-C bond lengths for atoms C(2) 
through C(12) have an average value 1.508 (6),& 
before correction and 1.518 (7),& after corrections 
including the effects of quasinormal vibrations. 
Although these corrections are appreciable, they 
appear to be underestimated, indicating that the 
model may have greater limitations in the case of 
ECT. However, because the ECT X-ray data were 
collected at room temperature, atomic m.s. displace- 
ments are much larger than for HTM and were not 
as accurately determined. It should be noted that the 

two uncorrected C-S bond lengths in HTM may be 
slightly different (2.6o-). The difference is not affected 
by corrections assuming models (i) and (ii), but with 
model (iii) these bond lengths become effectively the 
same (1.826, 1.825/~). 

For HTM and ECT, there is good agreement among 
the force constants determined for the torsion about 
the three S-C bonds (average value 24 J mol -~ deg -2) 
and also the adjacent C-C bonds (10J mol- '  deg-2). 
Using diffraction data from more than 125 crystal 
structures, Trueblood & Dunitz (1983) have estimated 
force constants for torsions of small librating groups 
about various kinds of bonds. The force constants 
obtained for HTM and ECT are small but they fall 
within the range of values reported by Trueblood & 
Dunitz. 

An important aspect of the quasinormal vibration 
model is that it leads to a description of the concerted 
motions of molecular subunits and also to estimates 
of the frequencies for these modes. For HTM, these 
frequencies are 51, 82 and 117 cm- ' .  Although each 
quasinormal mode is a combination of three internal 
torsional modes, the principal component in the 
lowest-frequency vibration (51 cm- ' )  is a torsion 
about S-C( l ) .  The next (82 cm -~) consists mainly of 
torsion about S-C(7), while the third (117 cm -~) has 
important contributions from torsions about both S-C 
bonds and also from torsion about C(7)-C(8). For 
ECT, the model involves only two quasinormal 
modes, which have frequencies 49 and 59 cm- ' .  The 
lower-frequency mode is mainly a torsion about the 
S(1)-C(12) bond. 

In principle, such frequencies that have been 
derived from Bragg diffraction data may be compared 
with values derived from infrared or Raman spectra 
or from neutron inelastic scattering. Unfortunately, 
such data are not available for HTM or ECT. 
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APPENDIX A 

The derivation of m.s. amplitude matrices 

The mean-square amplitude matrix in a normal coor- 
dinate system is a diagonal matrix ~Q, 

~Q = (QQ') 

with 
h hctoi 

( Q ' Q ' ) -  877 "2coJ--~ coth 2k---T" 

We assume the approximation 

coth ( x ) / x  ~- p~x  -2 + P2 + P3X 2 + p 4 x  4 
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with coefficients p~ = 1.00021, P2 = 2.61124 × 10 -l ,  
P3 - -  -2 .80087 × l 0  - 3  and p4=9.42058 × l 0  - 6  deter- 
mined by least-squares fitting in the range 0.05 < x < 

,i 2 2 2 10"0 (He, 1984). Then with )h =,+~r c to~, we have 

( Q , Q , ) = k T  plA~,~+p2 ~ +P3 ~ A~ 

or, in matrix form, 

]~Q = (QQ') 

h 6 

•  4(4 t 4 -  

APPENDIX B 

Matrix differentiation 

The following rules for matrix differentiation are 
frequently used: 

0 [ A X ] = A [  0 X]  

0 ,;rxvl = v ÷ x 

_° 
O1) i j 

where A is a matrix with constant elements, X and Y 
are matrices with variable elements, v U. 

Since Go is a constant matrix and Fo is a variable 
matrix it is trivial to derive (4). 

Transformation back to internal coordinates gives 

~ s =  L~OL, 

I = k T  p~LA-~L'+p2 LIL' 

By recognizing that 

I.A-IL' = Fo I 

LIL'= LL'= Go 

LA"L' = (GoFo)"Go, 

we find that (A.2) reduces to 

I!, s = k T  P l  o 1 +P2 Go 

+ P3 ( 4 ~ k T )  4 GoFoGo 

+ P4 ( 4 - - ~ k  T )  6 GoFoGoFoGo} • 

Wi th  Pt = kTp~, P2 = k T ( h / 4 7 r k T ) 2 p 2  
i m m e d i a t e l y  leads  to (1). 

etc., 

(A.2) 

(A.3) 

this 
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